-
1 ♦ knowledge
♦ knowledge /ˈnɒlɪdʒ/n. [u]1 conoscenza; sapere; conoscenze (pl.); cognizioni (pl.): a thirst for knowledge, la sete di conoscere (o di sapere); a good knowledge of English, una buona conoscenza dell'inglese; a limited knowledge of a subject, una conoscenza limitata di un argomento; scientific knowledge, sapere scientifico; conoscenze scientifiche; to have some knowledge of st., conoscere un poco qc.; avere una certa pratica di qc.; to have poor knowledge of st., conoscere poco qc.; a patchy knowledge of st., una conoscenza frammentaria di qc.; to lack any knowledge of st., ignorare completamente qc.; to have detailed knowledge of st., conoscere a fondo qc. NOTA D'USO: - knowledge o skills?-2 conoscenza; l'essere informato (su qc.): his knowledge of the facts, la sua conoscenza dei fatti; I had no knowledge of it, non ne sapevo nulla; It's common knowledge, è risaputo; lo sanno tutti; è di dominio pubblico; to come to sb. 's knowledge, giungere a conoscenza di q.; to deny all knowledge of st., negare di essere al corrente di qc.; dichiarare di essere all'oscuro di qc.; (form.) It has been brought to our knowledge that…, è giunto a nostra conoscenza che…; siamo stati informati del fatto che…; without sb. 's knowledge, senza che q. lo sappia; all'insaputa di q.; all'oscuro di q.; without my knowledge, a mia insaputa3 consapevolezza; coscienza: A baby has no knowledge of what he is doing, i bambini piccoli non hanno coscienza di quello che fanno4 sapere; dottrina; scienza; scibile; cultura: He's a man of great knowledge, è un uomo di grande dottrina; every branch of knowledge, ogni branca del sapere; general knowledge, cultura enciclopedica; cultura generale5 notizia: Knowledge of the victory reached London in no time, la notizia della vittoria giunse a Londra in un baleno6 (GB) – the knowledge, la conoscenza delle vie di Londra ( materia d'esame per la patente di tassista)● (comput.) knowledge base, knowledge base ( database per la gestione della conoscenza in ambiti aziendali) □ (econ., org. az.) knowledge-based organization, organizzazione basata sulla conoscenza (sistema organizzativo in cui la conoscenza svolge un ruolo centrale nella generazione del valore) □ (econ.) knowledge economy, economia della conoscenza, economia del sapere ( economia fondata sulla gestione efficace della conoscenza) □ (comput.) knowledge engineering, ingegneria della conoscenza □ (econ., org. az.) knowledge management, gestione della conoscenza □ (econ.) knowledge sharing, condivisione della conoscenza □ knowledge worker, knowledge worker; lavoratore della conoscenza ( ricercatori, accademici, programmatori, ecc.) □ human knowledge, la conoscenza umana; ( anche) lo scibile umano □ (form.) to ( the best of) my knowledge, per quel che ne so io; a quanto mi consta □ not to my knowledge, non che io sappia □ to be public knowledge, essere di dominio pubblico □ (prov.) Knowledge is power, sapere è potere. -
2 knowledge
знания, сведения, представление знаний
– knowledge accumulation
– knowledge acquisition
– knowledge base
– knowledge compilation
– knowledge domain
– knowledge elicitation
– knowledge engineer
– knowledge engineering
– knowledge frame
– knowledge information
– knowledge language
– knowledge management
– knowledge refinement
– knowledge representation/reasoning system
– knowledge schema
– knowledge synthesis
– knowledge system
– knowledge-based
– knowledge-based processing
– knowledge-based robot
– knowledge-based system
– knowledge-bearing construct
-
3 knowledge
[΄nɔlidз] n գիտելիք, իմա ցություն, իրազեկություն. basic knowledge տարրական գիտելիքներ. a good knowledge of լավ իմացություն. lack of knowledge գիտելիքի պակաս. firsthand knowledge սկզբնաղբյուրից իմանալ. knowledge and skills գի տելիք ներ և հմտություններ. common knowledge հան րահայտ բան. sound knowledge կայուն գիտելիքներ. branches of knowledge գիտության ճյուղեր. come to one’s knowledge (մեկին) հայտնի դառնալ. to my/to the best of my knowledge որքանով ինձ հայտնի է. without my knowledge առանց իմ գիտության. հմկրգ. knowledge based գիտելիքների վրա հիմնված. knowledge acquisition գի տե լիք նե րի հավաքում. knowledge engineering ինտելեկտուալ ապահովման մշա կում. knowledge processing գի տելիքների մշակում knowledge share system գիտելիքների համատեղ օգ տագործման համակարգ -
4 engineering
1) проектирование; конструирование2) техника•- automatic control engineering
- backward engineering
- communication engineering - computer-aided control engineering
- computer-aided engineering
- computer-assisted software engineering
- concurrent engineering
- human engineering
- information engineering
- knowledge engineering
- management engineering
- reliability engineering
- requirements engineering
- reverse engineering
- silicon engineering
- social engineering
- software engineering
- software performance engineering
- systems engineeringEnglish-Russian dictionary of computer science and programming > engineering
-
5 KBE
1) Компьютерная техника: Knowledge Based Engineering2) Техника: King Bubble Expander, keyboard encoder, keyboard entry4) Нефть: kelly bushing elevating5) Бурение: kelly bushing elevation6) Федеральное бюро расследований: Key Black Extremist -
6 KES
1) Компьютерная техника: Knowledge-based Engineering System2) Сокращение: Kenyan Shilling3) Университет: King Edward VI School, Southampton, Hampshire, King's- Edgehill School4) Вычислительная техника: Key Escrow System (Verschluesselung)5) NYSE. Keystone Consolidated Industries, Inc. -
7 system
1) система || системный3) вчт операционная система; программа-супервизор5) вчт большая программа6) метод; способ; алгоритм•system halted — "система остановлена" ( экранное сообщение об остановке компьютера при наличии серьёзной ошибки)
- CPsystem- H-system- h-system- hydrogen-air/lead battery hybrid system- Ksystem- Lsystem- L*a*b* system- master/slave computer system- p-system- y-system- Δ-system -
8 approach
1) приближение2) подход3) принцип; метод•- algorithm-specific approach
- all-or-nothing approach
- axiomatic approach
- Bayesian approach
- bilingual approach
- botton-up approach
- brute-force approach
- building-block approach
- comprehensive approach
- context-based approach
- contingency approach
- cross-impact approach
- cut-and-try approach
- database approach
- disaggregated approach
- divide-and-conquer approach
- engineering approach
- entity-relationship approach
- entropy forward approach
- fault-intolerance approach
- fault-tolerance approach
- formal approach
- fulcrum approach
- function-specific approach
- game-model approach
- game-theory approach
- graphic approach
- hardware-intensive approach
- heuristic approach
- hierarchical approach
- holistic approach
- integrated approach
- interactive approach
- interdisciplinary approach
- knowledge-based approach
- line-oriented approach
- modular approach
- module-by-module approach
- multilingual approach
- multiple incarnations approach
- novel approach
- omnibus approach
- performance sampling approach
- pitch-synchronous approach
- probabilistic approach
- Reiter's approach
- scan path approach
- servomechanism approach
- set-theoretical approach
- set-theoretic approach
- simulation approach
- single-task-machine approach
- software-intensive approach
- standards approach
- state-machine approach
- step-by-step approach
- systems approach
- systolic approach
- technically sound approach
- top-down approach
- transition function-based approach
- trial-and-error approach
- turnkey approachEnglish-Russian dictionary of computer science and programming > approach
-
9 software
•-
application software
-
bundled software
-
CAD software
-
CADAR software
-
cells' software
-
common software
-
communications software
-
compatible software
-
contouring software
-
control software
-
copy-protected software
-
custom software
-
design software
-
embedded software
-
engineering software
-
force transducer software
-
graphics software
-
in-house software
-
integrated software
-
interactive software
-
interface software
-
knowledge-based software
-
machine dependent software
-
machine interface software
-
menu-driven software
-
operating software
-
portable software
-
probe software
-
recognition software
-
resident software
-
robot software
-
ROM-based software
-
ROM software
-
space software
-
standard software
-
system software -
10 software
1) программное обеспечение; программные средства; программные продукты2) программа; программный продукт3) документация программного продукта; программная документация4) программный•- 16-bit software
- 32-bit software
- accompanying software
- alpha software
- anti-spam software
- antivirus software
- application software
- application development software
- artificial intelligence software
- associated software
- author software
- authoring software
- autonomous software
- backup software
- beta software
- bug-free software
- bundled software
- business software
- calendar software
- canned software
- client software
- command-driven software
- commercial software
- communications software
- compatible software
- content-free software
- copy-protected software
- copyrighted software
- crafty software
- cross software
- cuspy software
- custom software
- database software
- data warehouse software
- debugging software
- dependable software
- digital signal processor software
- DSP software
- electromagnetic design and analysis software
- e-mail transfer software
- embedded software
- engineering software
- enterprise-wide software
- e-recruiter software
- ex-commercial software
- free software
- free demonstration software
- freely distributable software
- general-purpose software
- graphics software
- handwriting recognition software
- homebreeding software
- homegrown software
- home management software
- horizontal software
- imaging software
- integrated software
- interactive software
- knowledge-based software
- manufacturer's software
- memory manager software
- menu-driven software
- microcomputer software
- modular software
- network software
- network-test software
- object-oriented software
- off-the-shelf software
- open network software
- packaged software
- paint software
- paintbrush software
- pattern matching software
- personal computer software
- point-of-sale software
- portable software
- portable document software
- pre-compiled software
- proprietary software
- public-domain software
- real-time software
- recognition software
- resident software
- ROM-based software
- roundtable software
- scientific software
- server software
- softer software
- supporting software
- statistical software
- switching-system software
- system software
- system application software
- tape-reading software
- third-party software
- translation software
- user software
- vertical software
- vertical market software
- windowing software -
11 software
1) программное обеспечение; программные средства; программные продукты2) программа; программный продукт3) документация программного продукта; программная документация4) программный•- 32-bit software
- accompanying software
- alpha software
- anti-spam software
- antivirus software
- application development software
- application software
- artificial intelligence software
- associated software
- author software
- authoring software
- autonomous software
- backup software
- beta software
- bug-free software
- bundled software
- business software
- calendar software
- canned software
- client software
- command-driven software
- commercial software
- communications software
- compatible software
- content-free software
- copy-protected software
- copyrighted software
- crafty software
- cross software
- cuspy software
- custom software
- data warehouse software
- database software
- debugging software
- dependable software
- digital signal processor software
- DSP software
- electromagnetic design and analysis software
- e-mail transfer software
- embedded software
- engineering software
- enterprise-wide software
- e-recruiter software
- ex-commercial software
- free demonstration software
- free software
- freely distributable software
- general-purpose software
- graphics software
- handwriting recognition software
- home management software
- homebreeding software
- homegrown software
- horizontal software
- imaging software
- integrated software
- interactive software
- knowledge-based software
- manufacturer's software
- memory manager software
- menu-driven software
- microcomputer software
- modular software
- network software
- network-test software
- object-oriented software
- off-the-shelf software
- open network software
- packaged software
- paint software
- paintbrush software
- pattern matching software
- personal computer software
- point-of-sale software
- portable document software
- portable software
- pre-compiled software
- proprietary software
- public-domain software
- real-time software
- recognition software
- resident software
- ROM-based software
- roundtable software
- scientific software
- server software
- softer software
- software for electronic mail
- statistical software
- supporting software
- switching-system software
- system application software
- system software
- tape-reading software
- third-party software
- translation software
- user software
- vertical market software
- vertical software
- windowing softwareThe New English-Russian Dictionary of Radio-electronics > software
-
12 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
13 modular data center
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > modular data center
-
14 technology
1) технология; технические приёмы2) техника; технические средства3) технические знания; технический опыт, систематизированный технический опыт•- actuator technology
- advanced manufacturing technology
- aggregate technology
- AI-based robotics technology
- assembly technology
- audiovisual technology
- automatic eddy current technology
- automation technology
- automative technology
- CAD/CAM technology
- CADCAM technology
- CAM technology
- capacitance technology
- capacitance-sensing technology
- CBN grinding technology
- cell manufacturing technology
- CIM-based technology
- CIMIS technologies
- CNC technology
- communication technology
- computer-aided technology
- computer-driven technology
- control technology
- conveyance technologies
- cutoff sawing technology
- cutting edge technology
- cutting machine tool technology
- cutting technology
- cutting tool technology
- digital eddy current technology
- digital imaging technology
- digital technology
- DNC technology
- eddy current technology
- electroheat technology
- electronic technology
- enabling technology
- engineering technology
- enterprise management technology
- fabricating technology
- fast-developing control technology
- field-proven technology
- five-axis technology
- flexible manufacturing technology
- FMS technology
- force-based technology
- framework technology
- gear processing technology
- generative NC technology
- group technology
- image expansion technology
- industrial automation technologies
- information management technology
- information technology
- innovative technology
- insert technology
- inspection technology
- instructional technologies
- instrumentation technology
- knowledge processing technology
- laser strip technology
- laser stripe technology
- laser surface modification technology
- laser technology
- laser-gaging technology
- leading-edge technology
- lighting technology
- locomotive technologies
- machine control technology
- machine tool control technology
- machine tool technology
- machining technology
- mainstream manufacturing technology
- manufacturing technology
- materials technology
- material-specific cutting technology
- mature technology
- measurement technology
- mechanical technology
- mechanical-engineering technology
- microprocessor technology
- moire technology
- monitoring technology
- multiple laser technology
- NC machining technology
- NC technology
- near-term technology
- networking technology
- numerical control process technology
- open system technology
- open systems technology
- pattern-recognition technology
- precision engineering technology
- probing technologies
- process technology
- processing technology
- production technology
- remote control technology
- robot technology
- robotics technology
- RP technology
- saw technology
- sensing technology
- sensor technology
- sheet metal working technology
- silicon integrated-circuit technology
- silicon technology
- solid state technology
- standard-product technologies
- support technology
- surface-mount technology
- swarf-monitoring technology
- telepresence technology
- telerobotic technology
- time study-based technology
- time-of-flight technology
- tried-and-true technology
- turning technology
- ultrasonic technology
- underlying technology
- unmanned turning technology
- up-to-the-minute technology
- vacuum technology
- vision technology
- workstation technologyEnglish-Russian dictionary of mechanical engineering and automation > technology
-
15 Weston, Edward
SUBJECT AREA: Electricity[br]b. 9 May 1850 Oswestry, Englandd. 20 August 1936 Montclair, New Jersey, USA[br]English (naturalized American) inventor noted for his contribution to the technology of electrical measurements.[br]Although he developed dynamos for electroplating and lighting, Weston's major contribution to technology was his invention of a moving-coil voltmeter and the standard cell which bears his name. After some years as a medical student, during which he gained a knowledge of chemistry, he abandoned his studies. Emigrating to New York in 1870, he was employed by a manufacturer of photographic chemicals. There followed a period with an electroplating company during which he built his first dynamo. In 1877 some business associates financed a company to build these machines and, later, arc-lighting equipment. By 1882 the Weston Company had been absorbed into the United States Electric Lighting Company, which had a counterpart in Britain, the Maxim Weston Company. By the time Weston resigned from the company, in 1886, he had been granted 186 patents. He then began the work in which he made his greatest contribution, the science of electrical measurement.The Weston meter, the first successful portable measuring instrument with a pivoted coil, was made in 1886. By careful arrangement of the magnet, coil and control springs, he achieved a design with a well-damped movement, which retained its calibration. These instruments were produced commercially on a large scale and the moving-coil principle was soon adopted by many manufacturers. In 1892 he invented manganin, an alloy with a small negative temperature coefficient, for use as resistances in his voltmeters.The Weston standard cell was invented in 1892. Using his chemical knowledge he produced a cell, based on mercury and cadmium, which replaced the Clark cell as a voltage reference source. The Weston cell became the recognized standard at the International Conference on Electrical Units and Standards held in London in 1908.[br]Principal Honours and DistinctionsPresident, AIEE 1888–9. Franklin Institute Elliott Cresson Medal 1910, Franklin medal 1924.Bibliography29 April 1890, British patent no. 6,569 (the Weston moving-coil instrument). 6 February 1892, British patent no. 22,482 (the Weston standard cell).Further ReadingD.O.Woodbury, 1949, A Measure of Greatness. A Short Biography of Edward Weston, New York (a detailed account).C.N.Brown, 1988, in Proceedings of the Meeting on the History of Electrical Engineering, IEE, 17–21 (describes Weston's meter).H.C.Passer, 1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass.GW -
16 tool
1) инструмент; орудие, орудие производства2) резец; инструмент, режущий инструмент; черновой резец ( зубострогального станка)3) приспособление; оснастка4) pl инструментарий; средства; совокупность инструментов6) налаживать ( станок)•to adjust the tool axially — регулировать инструмент в осевом направлении, смещать инструмент в осевом направлении
- 3D modeling toolsto tool roughly — начерно обрабатывать, грубо обрабатывать
- abrading tool
- abrasive tool
- AC-assisted machine tool
- activated tool
- adapter tool
- adjusting tool
- AI tools
- AI-based modeling tools
- air tool
- alternate tool
- analysis tool
- angle head tool
- angle portable tool
- angled tool
- angle-drilling tool
- annular broaching tool
- antivibration jumper installing tool
- application tools
- arm tool
- assembly tool
- assigned tool
- auxiliary tool
- backspot-facing tool
- backup tool
- back-working tool
- bad tool
- ball nose end cutting tool
- ball-nosed cutting tool
- band tool
- bending tool
- bent tool
- best tools
- blanking tool
- block tool
- boring tool
- box tool
- brazed tool
- brazed-tip tool
- broach tool
- broaching tool
- broad-nose finishing tool
- broad-nosed finishing tool
- broad-nosed tool
- broad-parting tool
- broad-tool
- BTA tool
- bucking tool
- burnishing tool
- burring tool
- cam-controlled machine tool
- carbide tool
- carbide-faced tool
- carbide-inserted tool
- carbide-tipped tool
- carbon-steel tool
- cartridge-type tool
- caulking tool
- CBN cutting tool
- CBN tool
- cemented carbide tool
- cemented-oxide tool
- center tool
- centering tool
- centering-and-facing tool
- ceramic tool
- chamfering tool
- chasing tool
- chemical vapor deposited tools
- chipped tool
- circular form tool
- circular tool
- clamped-tip tool
- clamping tool
- clipping tool
- CNC tools
- CNC ultra-precision machine tool
- CNC-sharpened tool
- coated tool
- coated-carbide cutting tool
- coining press tool
- collet release tool
- collet tool
- combination internal-external tool
- combination machine tool
- combination tool
- combined tool
- computer-controlled machine tool
- contour form milling tool
- contour milling tool
- contour turning tool
- control tools
- coolant-fed tool
- copy lathe tool
- copying tool
- cordless SPC tool
- core tool
- corrugated tool
- counterboring tool
- counter-rotating tool
- cross-drilling/milling tools
- crossworking tool
- crowning shaving tool
- cubic-boron-nitride cutting tool
- cup tool
- curling press tool
- customized machine tool
- cutoff tool
- cutter tool
- cutting laser tool
- cutting tool with inserted blades
- cutting tool
- cutting-off bit tool
- cutting-off tool
- CVD tools
- dead-end tool
- debugging tools
- deburring tool
- dedicated tool
- deep pocket tool
- design tools
- design verification tools
- development tools
- diagnostics tools
- diamond burnishing tool
- diamond tool
- diamond-coated tool
- diamond-edge tool
- diamond-plated tool
- diamond-turning tool
- digitized tool
- disposable cutting tools
- disposable insert tool
- DNC machine tool
- DNC-supported machine tool
- double-acting deburring tool
- double-diameter tool
- double-index roughing tool
- dressing tool
- drill burnishing tool
- drill tool
- drill/tap tool
- drilling tool
- driven tool
- driving tool
- duplicate tools
- edge tool
- EDM tool
- embossing press tool
- end mill tool
- end tool
- end-cutting tool
- end-working tool
- engraving tool
- erecting tool
- expandable abrading tool
- expanding block boring tool
- expanding block-type boring tool
- external tool
- external turning tool
- face grooving tool
- facing tool
- fastening tool
- feed-out tool
- fillet tool
- filleting tool
- fine boring tool
- finish tool
- finish-cut tool
- finishing tool
- first-selection backup tools
- fixed tool
- flat form tool
- flatted parallel shank tool
- flooded coolant tool
- fluted tool
- fly tool
- follow tools
- form tool
- forming machine tool
- forming tool
- fresh cutting tool
- front endworking tool
- gaged master tool
- ganged tools
- gear cutting tool
- gear tool
- general-purpose machine tool
- generating tool
- gooseneck tool
- grabbing tool
- grinding tool
- gripper tool
- gripping tool
- grooving tool
- hand-guided tool
- hand-held grinding tool
- hand-held tool
- hard pointed tool
- heading tool
- heavy-duty machine tool
- high-positive geometry tool
- high-positive-rake tool
- high-speed machine tool
- high-speed steel tool
- high-speed steel-cutting tool
- high-usage tools
- hold-down tool
- honing tool
- hot-set tool
- ID step tool
- ID tool
- idling tool
- image acquisition tools
- impregnated abrasive tool
- impregnated diamond tool
- inactive tool
- indexable cutting tool
- indexable-insert tool
- indexing machine tool
- infeed slide tool
- injection tool
- in-line powered tool
- insert tool
- inserted blade-type tool
- inserted carbide tool
- inserted tip tool
- insertion tool
- inside corner tool
- inside recessing tool
- inside turning tool
- inspection tool
- installation tool
- integrated tools
- integration tools
- interactive design tools
- internal boring tool
- internal diameter tool
- internally operating tool
- inward flanging press tool
- ironing press tool
- irradiated tool
- knowledge engineering tools
- knurling tool
- lab-quality inspection tool
- lancing press tool
- lapping tool
- large hybrid system building tools
- large narrow system building tools
- laser alignment tools
- laser leveling tool
- laser tool
- lathe tool
- layout tool
- left-hand tool
- leveling tool
- LH tool
- life-expired tool
- linear mounted tool
- locating tool
- logic-synthesis tools
- machine tool
- machining tool
- manually adjustable tool
- marking tool
- master tool
- measuring tool
- metal-cutting tool
- metalforming machine tool
- microsizing tool
- migrating tool
- milling tool
- miniCNC machine tool
- misplaced tool
- mis-set tool
- modeling tools
- modular tool
- mold tool
- molding tool
- monocrystalline diamond tool
- multicavity molding tool
- multifaceted tool
- multifluted tool
- multigrooving tool
- multiimpression injection tool
- multiple blanking tool
- multiple insert tool
- multiple-cavity mold tool
- multiple-impression press tool
- multipoint tool
- multipoint-cutting tool
- multitoothed tool
- narrow system building tools
- NC machine tool
- NC tool
- negative-rake cutting tool
- noncutting machine tool
- nonrotating tool
- notching press tool
- odd-fluted cutting tool
- OD-turning tool
- OD-working tool
- offset tool
- oil hole tool
- old tool
- one-sensor-one tool
- operating tool
- order-related tool
- outward flanging press tool
- pallet tools
- parallel-shank tool
- parallel-shanked tool
- particle-type dressing tool
- parting press tool
- parting tool
- part-off tool
- PCD tool
- percussive tool
- perishable tool
- physicochemical machine tool
- pickup tool
- piercing tool
- placement tool
- planer tool
- planing tool
- platen-mounted tool
- pneumatic tool
- polishing machine tool
- polycrystalline CBN cutting tool
- polycrystalline-diamond-edge tool
- polycrystalline-diamond-tipped tool
- polygon tool
- polygonal tool
- portable air tool
- portable expanding tool
- portable pneumatic tool
- portable power tool
- portable sinking tool
- portable tool
- positive/negative tool
- positive/positive tool
- positive-rake cutting tool
- positive-rake tool
- power tools
- powered rotary tool
- powered tool
- power-positioned tool
- preadjusted tool
- preformed boring tool
- preset qualified tool
- preset tool
- presettable tool
- press tool
- prismatic tool
- probe tool
- process tool
- processing tool
- production machine tool
- profiling tool
- programming tools
- protuberance tool
- punching press tool
- qualified tool
- quick-change tools
- rack-type tool
- radial cutting tool
- radioactive tool
- random tool
- rapid change tool
- rapidly wearing tool
- rear endworking tool
- rebuilt machine tool
- recessing tool
- reciprocating gear cutting tool
- reconditioned tool
- refurbished tool
- replaceable-insert tool
- replacement tool
- retrofitted machine tool
- RH tool
- right-angled powered tool
- right-hand tool
- rivet shaving tool
- roller-burnishing tool
- roll-forming tool
- rolling-in tool
- rotary pneumatic tool
- rotary tool
- rotating tool
- rotating turret tool
- rough boring tool
- rough cut tool
- roughing tool
- rough-turning tool
- round tool
- rounded tool
- round-nose tool
- round-nosed tool
- router tool
- routing tool
- scraping tool
- screw-cutting tool
- screw-rolling tool
- second selection backup tools
- segmented bulging press tool
- self-correcting tool
- shank tool
- shankless cutting tool
- shaped tool
- shaper-cutting tool
- shaping tool
- shared tools
- shaving press tool
- shaving tool
- shear tool
- short chipping tool
- side cutting tool
- side tool
- silicon nitride cutting tools
- silicon nitride tool
- simulation tools
- single-crystal tool
- single-layer tool
- single-pass tool
- single-point threading tool
- single-point tool
- single-purpose machine tool
- single-tip tool
- sister tool
- slitting tool
- slotting tool
- smoothing roller tool
- software development tools
- software tools
- software-based integration tools
- solid bit tool
- solid carbide tool
- solid modeling tools
- solid tool
- SPC tool
- specialized machine tool
- specially outfitted machine tool
- spent tool
- spindle probe tool
- spinning tool
- spline drive tool
- split bulging press tool
- spot-facing tool
- spotting tool
- square cutting tool
- square thread tool
- stamping tool
- static tool
- stationary tool
- step tool
- straight portable tool
- straight shank tool
- straight tool
- straight turning tool
- stripping tool
- stub boring tool
- superabrasive-plated tool
- support tools
- surfacing tool
- swan-neck tool
- sweep tool
- sweeping tool
- tail-end tools
- taper shank tool
- tapered shank tool
- tapping tool
- taught tool
- testing tools
- thermal tool
- thread milling tool
- thread turning tool
- thread-cutting tool
- threaded shank tool
- threading tool
- thread-rolling tool
- throwaway carbide tool
- throwaway insert tool
- throwaway tip tool
- throwaway tool
- tipped tool
- titanium-carbide-coated tool
- to tool up
- touch sensitive tool
- transfer tool
- transparent tool
- trepanning tool
- triangular cutting tool
- trim tool
- truing tool
- tube-expanding tool
- Tunruf tool
- turning tool
- turret tool
- ultrasonic tool
- undercutting tool
- underrun tool
- underused tool
- underutilized tool
- undetected broken tool
- unit-type machine tool
- universal boring and thread milling tool
- unmanned machine tool
- untended CNC machine tool
- versatile machine tool
- vibrating tool
- viscous damped tool
- visualization tools
- V-thread tool
- wear-prone tool
- welding laser tool
- wide-finishing tool
- wire-forming tool
- wireless measuring tool
- wobble broach tool
- wood-cutting tool
- workplace tool
- worm-configured tool
- worn cutting tool
- X-axis tool
- Y-axis tool
- Z-axis toolEnglish-Russian dictionary of mechanical engineering and automation > tool
-
17 Cotton, William
SUBJECT AREA: Textiles[br]b. 1819 Seagrave, Leicestershire, Englandd. after 1878[br]English inventor of a power-driven flat-bed knitting machine.[br]Cotton was originally employed in Loughborough and became one of the first specialized hosiery-machine builders. After the introduction of the latch needle by Matthew Townsend in 1856, knitting frames developed rapidly. The circular frame was easier to work automatically, but attempts to apply power to the flat frame, which could produce fully fashioned work, culminated in 1863 with William Cotton's machine. In that year he invented a machine that could make a dozen or more stockings or hose simultaneously and knit fashioned garments of all kinds. The difficulty was to reduce automatically the number of stitches in the courses where the hose or garment narrowed to give it shape. Cotton had early opportunities to apply himself to the improvement of hosiery machines while employed in the patent shop of Cartwright \& Warner of Loughborough, where some of the first rotaries were made. He remained with the firm for twenty years, during which time sixty or seventy of these machines were turned out. Cotton then established a factory for the manufacture of warp fabrics, and it was here that he began to work on his ideas. He had no knowledge of the principles of engineering or drawing, so his method of making sketches and then getting his ideas roughed out involved much useless labour. After twelve years, in 1863, a patent was issued for the machine that became the basis of the Cotton's Patent type. This was a flat frame driven by rotary mechanism and remarkable for its adaptability. At first he built his machine upright, like a cottage piano, but after much thought and experimentation he conceived the idea of turning the upper part down flat so that the needles were in a vertical position instead of being horizontal, and the work was carried off horizontally instead of vertically. His first machine produced four identical pieces simultaneously, but this number was soon increased. Cotton was induced by the success of his invention to begin machine building as a separate business and thus established one of the first of a class of engineering firms that sprung up as an adjunct to the new hosiery manufacture. He employed only a dozen men and turned out six machines in the first year, entering into an agreement with Hine \& Mundella for their exclusive use. This was later extended to the firm of I. \& R.Morley. In 1878, Cotton began to build on his own account, and the business steadily increased until it employed some 200 workers and had an output of 100 machines a year.[br]Bibliography1863, British patent no. 1,901 (flat-frame knitting machine).Further ReadingF.A.Wells, 1935, The British Hosiery and Knitwear Industry: Its History and Organisation, London (based on an article in the Knitters' Circular (Feb. 1898).A brief account of the background to Cotton's invention can be found in T.K.Derry and T.I. Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; C. Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press.F.Moy Thomas, 1900, I. \& R.Morley. A Record of a Hundred Years, London (mentions cotton's first machines).RLH -
18 Ayrton, William Edward
[br]b. 14 September 1847 London, Englandd. 8 November 1908 London, England[br]English physicist, inventor and pioneer in technical education.[br]After graduating from University College, London, Ayrton became for a short time a pupil of Sir William Thomson in Glasgow. For five years he was employed in the Indian Telegraph Service, eventually as Superintendent, where he assisted in revolutionizing the system, devising methods of fault detection and elimination. In 1873 he was invited by the Japanese Government to assist as Professor of Physics and Telegraphy in founding the Imperial College of Engineering in Tokyo. There he created a teaching laboratory that served as a model for those he was later to organize in England and which were copied elsewhere. It was in Tokyo that his joint researches with Professor John Perry began, an association that continued after their return to England. In 1879 he became Professor of Technical Physics at the City and Guilds Institute in Finsbury, London, and later was appointed Professor of Physics at the Central Institution in South Kensington.The inventions of Avrton and Perrv included an electric tricycle in 1882, the first practicable portable ammeter and other electrical measuring instruments. By 1890, when the research partnership ended, they had published nearly seventy papers in their joint names, the emphasis being on a mathematical treatment of subjects including electric motor design, construction of electrical measuring instruments, thermodynamics and the economical use of electric conductors. Ayrton was then employed as a consulting engineer by government departments and acted as an expert witness in many important patent cases.[br]Principal Honours and DistinctionsFRS 1881. President, Physical Society 1890–2. President, Institution of Electrical Engineers 1892. Royal Society Royal Medal 1901.Bibliography28 April 1883, British patent no. 2,156 (Ayrton and Perry's ammeter and voltmeter). 1887, Practical Electricity, London (based on his early laboratory courses; 7 edns followed during his lifetime).1892, "Electrotechnics", Journal of the Institution of Electrical Engineers 21, 5–36 (for a survey of technical education).Further ReadingD.W.Jordan, 1985, "The cry for useless knowledge: education for a new Victorian technology", Proceedings of the Institution of Electrical Engineers, 132 (Part A): 587– 601.G.Gooday, 1991, History of Technology, 13: 73–111 (for an account of Ayrton and the teaching laboratory).GW -
19 Bateman, John Frederick La Trobe
[br]b. 30 May 1810 Lower Wyke, near Halifax, Yorkshire, Englandd. 10 June 1889 Moor Park, Farnham, Surrey, England[br]English civil engineer whose principal works were concerned with reservoirs, water-supply schemes and pipelines.[br]Bateman's maternal grandfather was a Moravian missionary, and from the age of 7 he was educated at the Moravian schools at Fairfield and Ockbrook. At the age of 15 he was apprenticed to a "civil engineer, land surveyor and agent" in Oldham. After this apprenticeship, Bateman commenced his own practice in 1833. One of his early schemes and reports was in regard to the flooding of the river Medlock in the Manchester area. He came to the attention of William Fairbairn, the engine builder and millwright of Canal Street, Ancoats, Manchester. Fairbairn used Bateman as his site surveyor and as such he prepared much of the groundwork for the Bann reservoirs in Northern Ireland. Whilst the reports on the proposals were in the name of Fairbairn, Bateman was, in fact, appointed by the company as their engineer for the execution of the works. One scheme of Bateman's which was carried forward was the Kendal Reservoirs. The Act for these was signed in 1845 and was implemented not for the purpose of water supply but for the conservation of water to supply power to the many mills which stood on the river Kent between Kentmere and Morecambe Bay. The Kentmere Head dam is the only one of the five proposed for the scheme to survive, although not all the others were built as they would have retained only small volumes of water.Perhaps the greatest monument to the work of J.F.La Trobe Bateman is Manchester's water supply; he was consulted about this in 1844, and construction began four years later. He first built reservoirs in the Longdendale valley, which has a very complicated geological stratification. Bateman favoured earth embankment dams and gravity feed rather than pumping; the five reservoirs in the valley that impound the river Etherow were complex, cored earth dams. However, when completed they were greatly at risk from landslips and ground movement. Later dams were inserted by Bateman to prevent water loss should the older dams fail. The scheme was not completed until 1877, by which time Manchester's population had exceeded the capacity of the original scheme; Thirlmere in Cumbria was chosen by Manchester Corporation as the site of the first of the Lake District water-supply schemes. Bateman, as Consulting Engineer, designed the great stone-faced dam at the west end of the lake, the "gothic" straining well in the middle of the east shore of the lake, and the 100-mile (160 km) pipeline to Manchester. The Act for the Thirlmere reservoir was signed in 1879 and, whilst Bateman continued as Consulting Engineer, the work was supervised by G.H. Hill and was completed in 1894.Bateman was also consulted by the authorities in Glasgow, with the result that he constructed an impressive water-supply scheme derived from Loch Katrine during the years 1856–60. It was claimed that the scheme bore comparison with "the most extensive aqueducts in the world, not excluding those of ancient Rome". Bateman went on to superintend the waterworks of many cities, mainly in the north of England but also in Dublin and Belfast. In 1865 he published a pamphlet, On the Supply of Water to London from the Sources of the River Severn, based on a survey funded from his own pocket; a Royal Commission examined various schemes but favoured Bateman's.Bateman was also responsible for harbour and dock works, notably on the rivers Clyde and Shannon, and also for a number of important water-supply works on the Continent of Europe and beyond. Dams and the associated reservoirs were the principal work of J.F.La Trobe Bateman; he completed forty-three such schemes during his professional career. He also prepared many studies of water-supply schemes, and appeared as professional witness before the appropriate Parliamentary Committees.[br]Principal Honours and DistinctionsFRS 1860. President, Institution of Civil Engineers 1878, 1879.BibliographyAmong his publications History and Description of the Manchester Waterworks, (1884, London), and The Present State of Our Knowledge on the Supply of Water to Towns, (1855, London: British Association for the Advancement of Science) are notable.Further ReadingObituary, 1889, Minutes of the Proceedings of the Institution of Civil Engineers 97:392– 8.Obituary, 1889, Proceedings of the Royal Society 46:xlii-xlviii. G.M.Binnie, 1981, Early Victorian Water Engineers, London.P.N.Wilson, 1973, "Kendal reservoirs", Transactions of the Cumberland and Westmorland Antiquarian and Archaeological Society 73.KM / LRDBiographical history of technology > Bateman, John Frederick La Trobe
-
20 Brandt, Alfred
SUBJECT AREA: Mining and extraction technology[br]b. 3 September 1846 Hamburg, Germanyd. 29 November 1899 Brig, Switzerland[br]German mechanical engineer, developer of a hydraulic rock drill.[br]The son of a Hamburg merchant, he studied mechanical engineering at the Polytechnikum in Zurich and was engaged in constructing a railway line in Hungary and Austria before he returned to Switzerland. At Airolo, where the Gotthard tunnel was to commence, he designed a hydraulic rock drill; the pneumatic ones, similar to the Ingersoll type, did not satisfy him. His drill consisted of two parts instead of three: the hydraulic motor and the installation for drilling. At the Sulzer company of Winterthur his first design, a percussion drill, in 1876, was developed into a rotary drill which worked with greatest success in the construction of various railway tunnels and also helped to reduce costs in the mining industry.His Hamburg-based firm Brandt \& Brandau consequently was soon engaged in many tunnelling and mining projects throughout Germany, as well as abroad. During the years 1883 and 1895 Brandt spent time in exploration in Spain and reopening the lead-mines in Posada. His most ambitious task was to co-operate in drafting the Simplon tunnel, the construction of which relied greatly on his knowledge and expertise. The works began several years behind schedule, in 1898, and consequently he was unable to see its completion.[br]Bibliography1877, "Beschreibung und Abbildung der Brandtschen Bohrmaschine", Eisenbahn 7 (13).Further ReadingC.Matschoss, 1925, Manner der Technik, Berlin.G.E.Lucas, 1926, Der Tunnel. Anlage und Bau, Vol. 2, Berlin, pp. 49–55 (deals with his achievements in the construction of tunnels).WK
- 1
- 2
См. также в других словарях:
Knowledge-based engineering — (KBE) is a discipline with roots in computer aided design (CAD) and knowledge based systems but has several definitions and roles depending upon the context. An early role was support tool for a design engineer generally within the context of… … Wikipedia
Knowledge-based systems — According to the Free On line Dictionary of Computing (FOLDOC), a knowledge based system is a program for extending and/or querying a knowledge base.The [http://www.computeruser.com/resources/dictionary/ Computer User High Tech Dictionary]… … Wikipedia
Knowledge modeling — is a process of creating a computer interpretable model of knowledge or standard specifications about a kind of process and/or about a kind of facility or product. The resulting knowledge model can only be computer interpretable when it is… … Wikipedia
Knowledge engineering — (KE) has been defined by Feigenbaum, and McCorduck (1983) as follows: KE is an engineering discipline that involves integrating knowledge into computer systems in order to solve complex problems normally requiring a high level of human expertise … Wikipedia
Knowledge management — (KM) comprises a range of strategies and practices used in an organization to identify, create, represent, distribute, and enable adoption of insights and experiences. Such insights and experiences comprise knowledge, either embodied in… … Wikipedia
Knowledge representation — is an area in artificial intelligence that is concerned with how to formally think , that is, how to use a symbol system to represent a domain of discourse that which can be talked about, along with functions that may or may not be within the… … Wikipedia
Knowledge Management — (KM) comprises a range of practices used by organisations to identify, create, represent, distribute and enable adoption of what it knows, and how it knows it. It has been an established discipline since 1995 [Stankosky, 2005] with a body of… … Wikipedia
Knowledge Acquisition and Documentation Structuring — (KADS) is a structured way of developing knowledge based systems (expert systems). It was developed at the University of Amsterdam as an alternative to an evolutionary approach and is now accepted as the European standard for knowledge based… … Wikipedia
Knowledge market — is a mechanism for distributing knowledge resources. There are two views on knowledge and how knowledge markets can function. One view uses a legal construct of intellectual property to make knowledge a typical scarce resource, so the traditional … Wikipedia
Knowledge retrieval — is a field of study which seeks to return information in a structured form, consistent with human cognitive processes as opposed to simple lists of data items. It draws on a range of fields including Epistemology (Theory of knowledge), Cognitive… … Wikipedia
Knowledge intensive business services — (commonly known as KIBS) are services and business operations heavily reliant on professional knowledge. They are mainly concerned with providing knowledge intensive support for the business processes of other organizations. As a result, their… … Wikipedia